Software For Accelerators

Paul Lebrun

Accelerator Activity Coordination Meeting

August, 2004

Topics...

- SDA: Making Accelerator data available to physicists, engineers and managers.. (S. Panacek, K. Genser, P. Lebrun)
- BLASTMAN: Magnet Database Project (D. Box, M. Fischler)
- Tevatron Instrumentation Projects (excluding BPM)
 - > Real-time longitudinal emittance calculation for SBD (A. Para)
 - > Tevatron Tune Fitter 1.7 GHz, 21.4 MHz (P. Lebrun)
- Tevatron Orbit Cusp Finder and Beam Orbit Smoothing Tools
- Input to VAX-VMS migration project and improvement to Control System (R. Rechenmaker, S. Panacek, P. Lebrun)
- Outlook: what's next?

SDA: Introduction

SDA is a system for acquiring, archiving and analyzing data from stores.

- Slides borrowed from talk presented at ICAPO4, summarized.
- Objectives & Scope
- Data Acquisition and Archiving Aspect. (Skip!..)
- Analysis (SDA = Shot Data Analysis, for us)
 - > Tools & computing aspects
 - > Output
 - Web based
 - Summary table
 - Detailed information
 - Application Interfaces
- Analysis results:
 - > Tevatron complex performance assessment via SDA

The Team

SDA Group in Integration Department

- > K. Gounder, E. McCrory, V. Papadimitriou, J. Slaughter
- > Coordination, monitoring, analysis

Controls Department

- T. Bolshakov, M. McCusker, K. Cahill, B. Hendricks, J. Patrick and others
- > Infrastructure and applications

Computing Division

- > K. Genser, P. Lebrun, S. Panacek
- > Analysis and applications

A collaboration between A/D Controls, Computing Division, A/D physicist, CDF/DO. The coordination is the responsibility of the Accelerator Integration Department

Scope of SDA: "Store" Performance analysis

Ultimate Goal: More integrated luminosity usable by the experiments

- Allows correlation of information from multiple sources at specific times during the stores
- Information for day to day monitoring of stores
- Specialized studies
 - > Long term trends
 - > Investigate correlations
 - · Luminosity vs. emittances, number of protons and anti-protons
 - > Accelerator physics questions
 - Pbar Burn rate / total loss rate during HEP
 - · Orbit changes
 - Unknow issues, hurdles yet to be discovered!
- The Tevatron complex includes the proton and antiproton sources, the Main Injector and the Recycler.

SDA - Computing

- Programming language: Java! ... for data acquisition and analysis.
- Extensive use of high-level communication protocols, such as R.M.I.
- Multi-tier architecture: use of "servlets" applications to extract data
- Simple and straightforward use of relational database (SYBASE and MSQL) to hold the data.
- We rely on the Web for distribution of summary plots and tables (Excel or HTML), and API code distributions
- Coherent data access for both "sequenced" (triggered) and "periodic" (1 Hz -> 5 min) data.

SDA: Analysis Tools

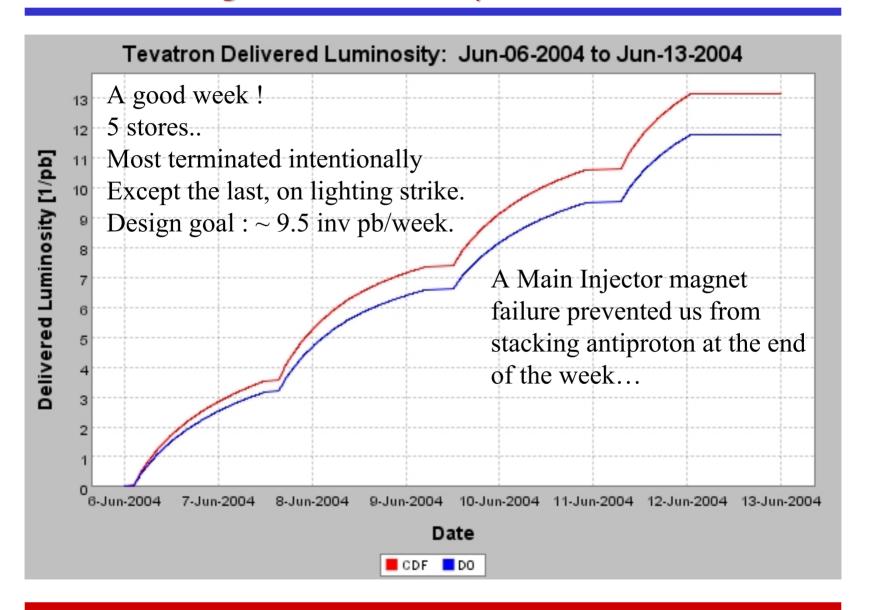
- Data Browser on the web or standalone Java (SDAViewer)
- Report Writer for quick studies
- Tables built automatically every store
 - Supertable and EXCEL package
 - Derived tables and associated plotting tools
 - Short summary tables
 - Tables use corrected values
- Shots scrapbook
- OSDA (Offline Shot Data Analysis) Suite of Java classes for user programs to directly access the data, apply corrections and calculate generally useful quantities like lifetimes (mostly 5. Panacek)
- OSDAPhysics: Suite of Java class for beam physics studies (K. Genser, P. Lebrun,....)

Supertable

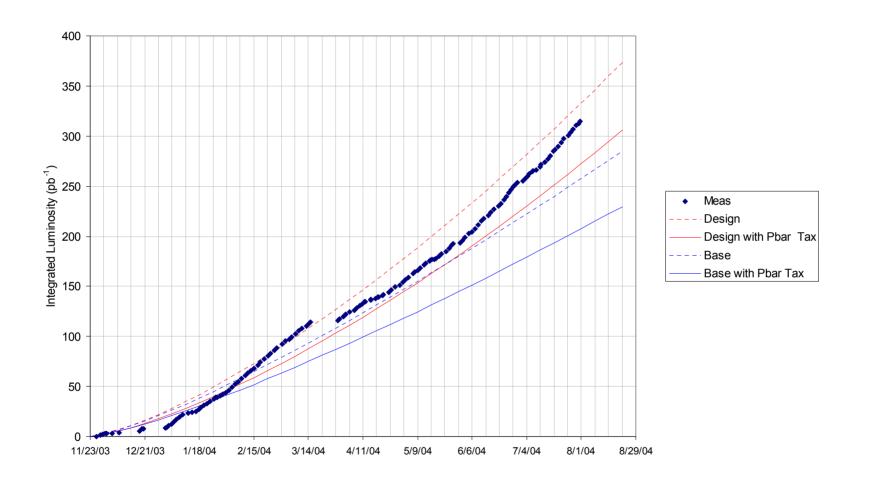
- One line per store
- Built automatically every store
- 130+ quantities of general interest
 - > Dates, time on helix, length of store
 - > How store ended
 - > Luminosities, intensities at collision
 - > Efficiencies at each stage from p, pbar sources to HEP
 - > Emittances at each stage
 - > Peak, average losses
 - > Lifetimes, etc.
 - > Averages over all bunches, for each quantity
- Web Accessible HTML, EXCEL
 - > analysis with plots, tables also on Web

SDA Edited Excerpt from Super Table

0 Store #	1 Date started shot set up	7 store length (hours)	8 how store ended	10 start stack	11 unstacking fraction	12 amount unstacked
3228	2/12/2004	0.22	Not Completed	135.19	0.88	119.2
3226	2/10/2004	33.31	Normal	160.39	0.86	138.6
3224	2/8/2004	36.92	Normal	149.39	0.87	129.6
3222	2/7/2004	40.18	Normal	177.19	0.81	144.2
3219	2/5/2004	31.09	Normal	173.79	0.85	147.6
3217	2/3/2004	27.98	Normal	204.19	0.8	163.4
3214	2/2/2004	33.89	Normal	208.19	0.75	156.4
3212	1/31/2004	31.37	Normal	175.19	0.78	136
3210	1/30/2004	14.65	Normal	189.39	0.62	118
3206	1/29/2004	15.1	TevQuench	80.59	0.94	75.4
3197	1/27/2004	32.38	Normal	120.39	0.9	108.6
3195	1/26/2004	2.68	Abort	145.39	0.91	131.6
3191	1/25/2004	17.9	Abort	103.79	0.93	96.2
3189	1/23/2004	35.76	Normal	142.39	0.88	125.2
3185	1/22/2004	26.41	Normal	133.19	0.9	120.4
3183	1/21/2004	23.59	Normal	120.39	0.85	102.6
3179	1/19/2004	27.76	Normal	163.19	0.86	140.4
3177	1/17/2004	22.27	Normal	172.39	0.81	140
3175	1/16/2004	25.07	Normal	176.39	0.7	123.6
3172	1/15/2004	21.48	Normal	159.99	0.51	81.2

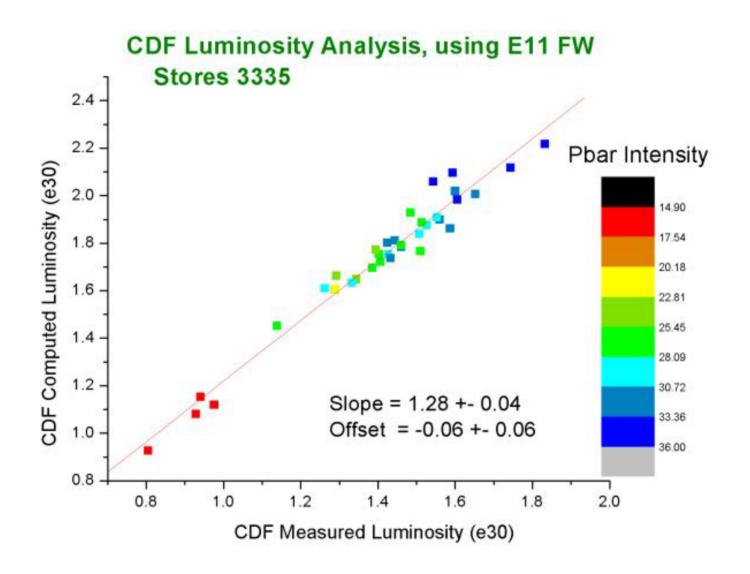

SDA Derived Tables-Bunch by Bunch Information

- Table per store built automatically
 - > All 6 emittances
 - > Intensities
- Average and bunch by bunch information
- Use best algorithms to get physics quantities
 - > Not always available directly from front-end.
- Interactive plotting interface


SDA Store Checker

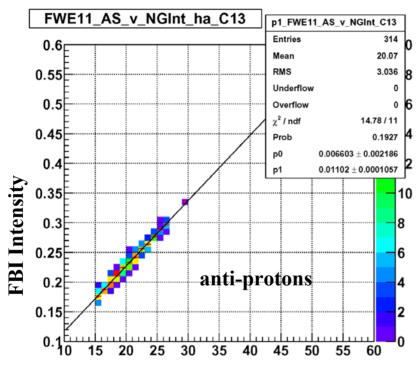
- Purpose
 - Monitor instrumentation and DAQ
 - > Monitor accelerator performance
- Checks SDA data for specified cases/sets
 - > Min < device value < max
 - > Min < (difference in time of 2 devices) < max
 - > Min < (difference in value of 2 devices) < max
- Jobs run automatically every store
- "Standard" and "private" lists
- Results on WWW for "standard" list
- Lists on WWW
- Used to give email notification of initial luminosities

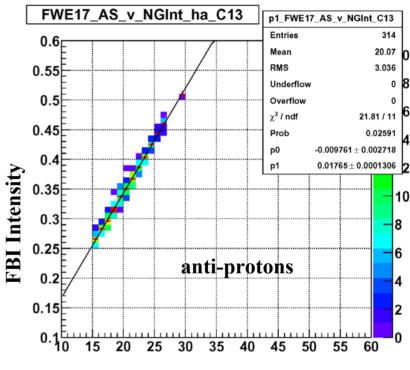
Integrated Luminosity Table and Plot


FY04 Integrated Luminosity

SDA Examples of Detailed Analysis

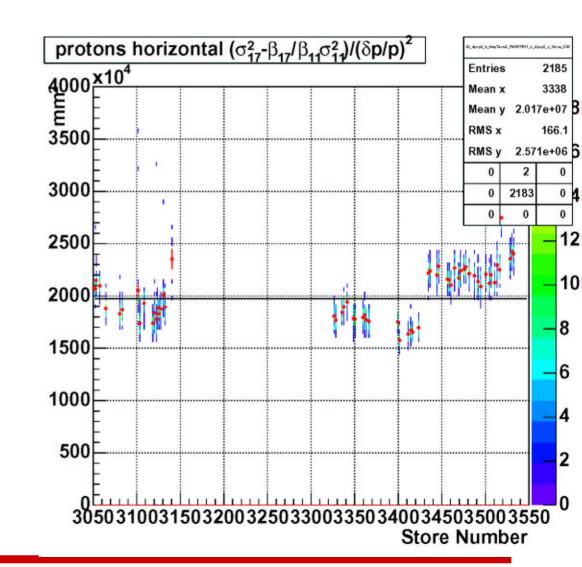
- These two plots described our overall performance.
 Improving performance requires meticulous analysis based on many data sources..
 - > Is data acquisition reliable?
 - > Is the instrumentation adequate?
 - Relative calibrations between devices and same devices in different machines
 - Systematic and statistical errors
- Let us go through a few examples of detailed analysis based on SDA tools and data sets:
 - Bunch by bunch Luminosity expectation (Skip)
 - > Tevatron Transverse Emittances. (K. Genser)

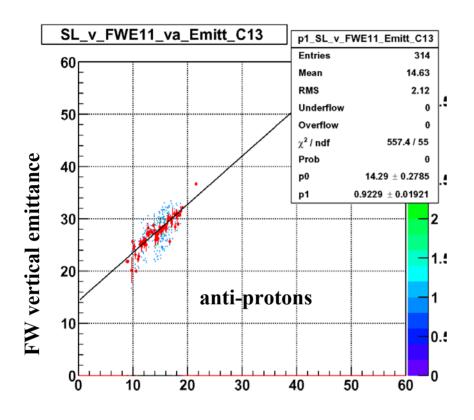

SDA - Example of Analyses


SDA: Tevatron Flying Wires and SyncLite

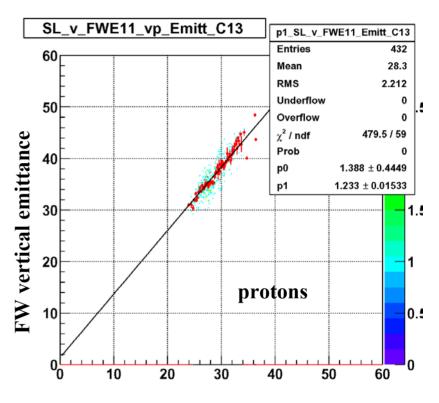
- Compare area of FW profile to FBI intensity
 - > Very linear
 - Qualitative agreement given differences in gain and acceptance of the paddles
- Compare horizontal emittance as measured at E11 with E17 emittance, using SBD for dp/p
 - Anti-protons ratio has slope of .97 and intercept of 1.25 after fixing saturation
 - > Protons poor agreement, slope .41, intercept 14.5
- Compare area of SyncLite profile with FBI intensity
 - > Better for anti-protons than for protons
- Compare flying wire emittances with SyncLite emittances
- Very sensitive to lattice parameters and dp/p
- Store to store variations
- **-**

Compare FW Signal Intensity with FBI Intensity


FW E11 horizontal Signal Int.


FW E17 Horizontal Signal Int.

Compare E11 to E17 FW Horizontal Emittances


- This quantity is a fixed combination of the beta and dispersion function.
- Store 3424 lattice change is seen by horizontal Flying Wires;
- Proton detectors indicate another smaller change before store 3528 (due to RF change?) - we need to know the momentum spread to extract horizontal emittance

SDA: Compare SyncLite to FW - Vertical

SyncLite vertical Emittance

SyncLite vertical Emittance

Outlook: The SDA meets new challenges.

- Mixed Source Mode operation: The Main Injector takes antiproton from both the antiproton source and the Recycler. => SuperTable has recently been expanded. Further checks needed.
- > Keep doing beam physics analysis. The machines have a life of their own!..
- > Formalize standard Analysis, place them in ScrapBook...
- > Better organization and maintenance of the software.
 - The osda/osdaphysics set of class grew without preconceived, "proper" OO design, originally. First phase of redesing done, but could do better
 - Should be made easer to use..
 - · Enhanced reliability of the D.A. and Analysis tools
- > Integrated Calibration Databases (?)
- > Data Schema Evolution for basic ACNET Variable (?)

Other Software projects...

- Magnet Database Project (D. Box, M. Fischler)
- Tevatron Instrumentation Projects (excluding BPM)
 - > Real-time longitudinal emittance calculation for SBD (A. Para)
 - > Tevatron Tune Fitter 1.7 GHz, 21.4 MHz (P. Lebrun)
- Tevatron Orbit Cusp Finder and Beam Orbit Smoothing Tools
- Input to VAX-VMS migration project and improvement to Control System (R. Rechenmaker, S. Panacek, P. Lebrun)
- Outlook: what's next?

Magnet DB BLASTMAN: From docDB (beams) 956

"Magnet properties and alignment data are used for modeling and tuning Tevatron performance.....

For accelerator physicists who need to model and understand beam-magnet interactions, we propose to develop the Beams Lattice Alignment Survey Tracker for Modeling Accelerators Numerically (BLASTMAN) database. BLASTMAN will be a database of magnet locations, field strengths, calibrations and other magnet data that facilitate repeatable generation of lattices for modeling purposes..... "

Key Point: Critical Machine Data was kept by "experts"

And not easily shared...

→ Create a proper database

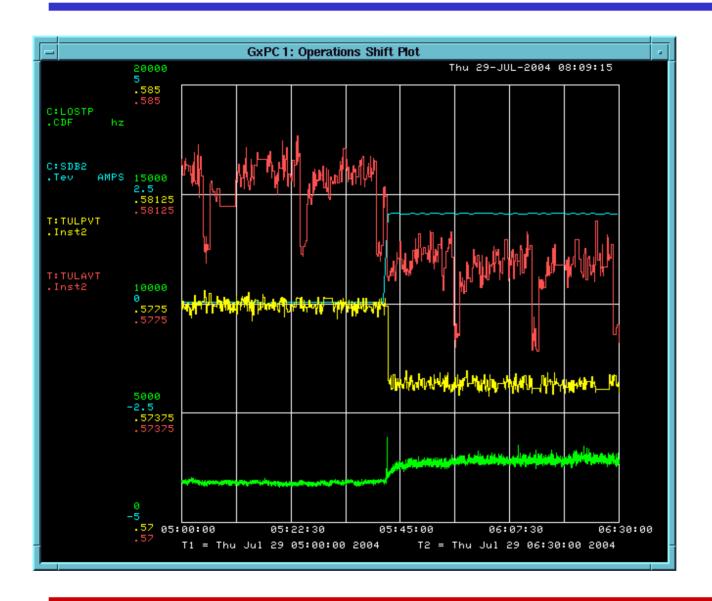
BLASTMAN: Status report from D. Box

- Equipment Inventory from M.E. /TeV (D. Augustine) into -> BLASTMAN.
- New Survey data from Alignment Management Group.
- Preliminary ER diagram for better integration of raw survey data
- N. Gelfand satisfied the BLASTMAN phase 1 is acceptable replacement for VAX MAGFIN db.. -> one old d.b. on the way to retirement..Need to finish maintenance tools.

Tevatron Instrumentation Support (I)

Sample Bunch Display (A. Para)

- Alvin Tollestrup came up with an algorithm to compute momentum spread and long. Emittance from pulse shape (time-wise) measurements, assuming constant phase space density along synchrotron motion.
- > and implemented it... in Mathematica...
- Not suitable for Front-ends...
- > Rewritten in C and Lab-View, now integrated
- > We will need to re-commission this in the new SBD (better scope and front-end computer.)

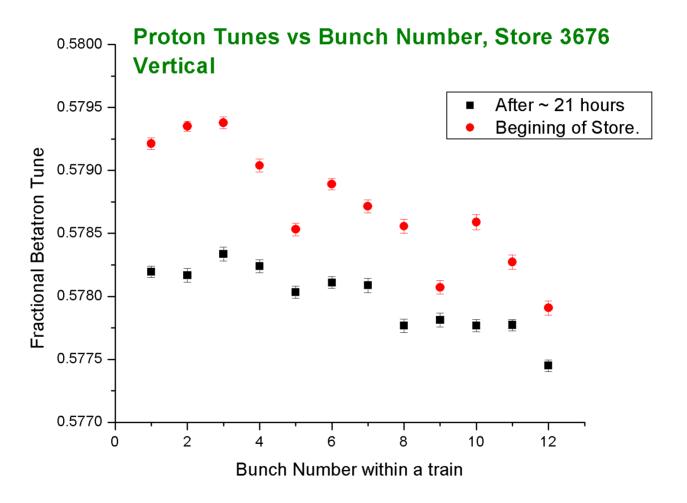

Tevatron Instrumentation (II): Tune Fitter

- Tune Fitters (P. Lebrun. ... mostly.. Two years ago, ihad a bit of help from J Marraffino to get started with data conversion.)
 - Motivation: Keep track of the betatron tunes while beams are circulating...
 - > Front-end consist of VSA or digitizer cards + online computers running Fast Fourrier Transforms => freq spectra.
 - > Must fit, "reliably" and often, such spectra, to extract "Tunes" and publish to ACNET.
 - > Two of them, we have to type of Schottky devices (resonators) .. 21.4 MHz and 1.7 GZ => different tune fitters.
 - Details are http://www-ad.fnal.gov/tevtune/

Tevatron Tune Fitter: example of use

- Tuning at the beginning of the store.
- During stores.. When things go wrong..
- Studies..
 - > Lattice studies ...
 - Beam-Beam studies....
- In use..

Store 3678: Flaky Sextupole Circuit....



Proton tune very stable until. ?

(Pbar tune changing because I kept changing the bunch gate every minute..)
Proton losses responded!

Tev expert looked at circuit.. SDB2 turned on!

Vertical Proton Tune affected by Pbars:

Tevatron Cusp Fitter:

- Team: Mark Fischler and John Marraffino
- Goal: Better (smoother) Tevatron beam orbit to maximize dynamic aperture.
- Input: BPM Readings, DFG settings, old orbit data
 - > as a control system application
- Deduce the most likely combinations of magnetic field distortions (which cause "cusps" in the orbit) that would explain these readings.
- Useful in
 - Beam orbit smoothing
 - Understanding magnet changes

Tevatron Beam Orbit Smoother

- Goal: Same, additional utilities will be needed.
- Input: Existing orbit (BPM readings); target orbit
- Compute good DFG settings to smooth to the target orbit
- Enhancements over existing DFG applications:
 - > Respecting the limitations on the DFG currects.
 - > Avoiding two competing DFG's.
 - Minimizing current slew up the ramp in individual DFG's.

Controls & VAX VMS migration

- Three of us (Ron R., Suzanne P. and Paul L.) attend regularly the meeting of the task force on Controls & VAX VMS migration...
- Participate in the write-up on Java strategy. (Report will be out "soon")
- Wrote a nice tutorial for Java Application. (S. Panacek)
 - > After consulting with AD/Controls
 - > Presented to ~4 to 6 AD "students".
 - > Has been used by a few newcomers..

Controls & VAX VMS migration

- Java is not the only answer... Current implementation has some deficiencies.
- Move (Vax-C -> ANSI C) of the core infrastructure to Linux has started, progressing well... The plans calls for starting to migrate end-users applications beginning FY05. Existing Java applications will be maintained and upgraded. New Applications? Well.. To be decided on a case by case basis.
- Need to integrate the C/(C++?) and the Java!!

A difficult project (we deal with a running machine!) with real luminosity pay-off if successful !!!

Summary and Outlook

- Computing Division has delivered software to Accelerator Division. Quite a bit of it is in use.
- SDA is a working system, but it could be improved upon.
- We (AD + CD!) most definitely could do better in terms of D.A & Controls. Plenty of opportunities there. Integrated Luminosity = time * Luminosity. Better Control, less time wasted!